Mammalian proliferating cell nuclear antigen stimulates the processivity of two wheat embryo DNA polymerases.

نویسندگان

  • P Laquel
  • S Litvak
  • M Castroviejo
چکیده

Multiple DNA polymerases have been described in all organisms studied to date. Their specific functions are not easy to determine, except when powerful genetic and/or biochemical tools are available. However, the processivity of a DNA polymerase could reflect the physiological role of the enzyme. In this study, analogies between plant and animal DNA polymerases have been investigated by analyzing the size of the products synthesized by wheat DNA polymerases A, B, CI, and CII as a measure of their processivity. Thus, incubations have been carried out with poly(dA)-oligo(dT) as a template-primer under varying assay conditions. In the presence of MgCl2, DNA polymerase A was highly processive, whereas DNA polymerases B, CI, and CII synthesized much shorter products. With MnCl2 instead of MgCl2, DNA polymerase A was highly processive, DNA polymerases B and CII were moderately processive, and DNA polymerase CI remained strictly distributive. The effect of calf thymus proliferating cell nuclear antigen (PCNA) on wheat polymerases was studied as described for animal DNA polymerases. The high processivity of DNA polymerase A was PCNA independent, whereas both enzyme activity and processivity of wheat DNA polymerases B and CII were significantly stimulated by PCNA. On the other hand, DNA polymerase CI was not stimulated by PCNA and, like animal DNA polymerase beta, was distributive in all cases. From these results, we propose that wheat DNA polymerase A could correspond to a DNA polymerase alpha, DNA polymerases B and CII could correspond to the delta-like enzyme, and DNA polymerase CI could correspond to DNA polymerase beta.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs.

Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro....

متن کامل

Proliferating cell nuclear antigen (PCNA): a dancer with many partners.

Proliferating cell nuclear antigen (PCNA) was originally characterised as a DNA sliding clamp for replicative DNA polymerases and as an essential component of the eukaryotic chromosomal DNA replisome. Subsequent studies, however, have revealed its striking ability to interact with multiple partners, which are involved in several metabolic pathways, including Okazaki fragment processing, DNA rep...

متن کامل

The human papillomavirus DNA helicase E1 binds, stimulates, and confers processivity to cellular DNA polymerase epsilon

The papillomavirus (PV) helicase protein E1 recruits components of the cellular DNA replication machinery to the PV replication fork, such as Replication Protein A (RPA), DNA polymerase α-primase (pol α) and topoisomerase I (topo I). Here we show that E1 binds to DNA polymerase ϵ (pol ϵ) and dramatically stimulates the DNA synthesis activity of pol ϵ. This stimulation of pol ϵ by E1 is highly s...

متن کامل

The yeast analog of mammalian cyclin/proliferating-cell nuclear antigen interacts with mammalian DNA polymerase delta.

DNA polymerase III from Saccharomyces cerevisiae is analogous to the mammalian DNA polymerase delta by several criteria, including an increased synthetic activity on poly(dA).oligo(dT) (40:1 nucleotide ratio) in the presence of calf thymus proliferating-cell nuclear antigen (PCNA), or cyclin. This stimulation assay has been used to purify the yeast analog of PCNA/cyclin (yPCNA) to homogeneity. ...

متن کامل

Homology in accessory proteins of replicative polymerases--E. coli to humans

The basis for the remarkably high processivity of DNA polymerases that duplicate long chromosomes appears quite similar in prokaryotes and eukaryotes. In each of these cell types, the replicative polymerase has several accessory proteins which endow the polymerase subunit with its speed and processivity. The replicative polymerases of the well studied systems of bacteriophage T4, E.coli (DNA po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 1993